Secretogranin III is an astrocyte granin that is overexpressed in reactive glia.

نویسندگان

  • Sonia Paco
  • Esther Pozas
  • Fernando Aguado
چکیده

Astrocytes release peptide and nonpeptide transmitters that influence neuronal development, function, and plasticity. However, the molecular components of the astroglial secretory pathways in vivo are largely unknown. Here, we analyze in astrocytes the production, expression regulation, trafficking, and release of secretogranin III (SgIII), a member of the multifunctional granin family. We show that astroglial cells in culture synthesize and release a nonprocessed form of SgIII. In vivo studies show that many neuronal populations produce and transport SgIII. In particular, the highest SgIII expression in the cerebral cortex in vivo is present in astroglial cells. Both SgIII protein and mRNA are abundantly detected in cortical astrocytes and in Bergmann glial cells. Moreover, the levels of SgIII mRNA and protein in reactive astrocytes, induced by perforating injury increase dramatically. These results implicate SgIII in the astrocyte secretory pathway in vivo and show that its expression is finely regulated during glial activation. The robust expression of SgIII in astrocytes and its regulation in the injured brain suggest both intracellular and extracellular roles for this glial granin in the physiology and repair/damage of neuronal circuits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The granin family--its role in sorting and secretory granule formation.

Two types of secretory pathways are present in mammalian cells: constitutive secretion and regulated secretion (1). In the constitutive secretory pathway, which is found in all types of cells, secretory products are packed in small vesicles. Most of the proteoglycans and glycoproteins of the extracellular matrix are secreted in this way. The regulated secretory pathway, found in the more differ...

متن کامل

Mysterious inhibitory cell regulator investigated and found likely to be secretogranin II related

In the context of a hunt for a postulated hormone that is tissue-mass inhibiting and reproductively associated, there is described probable relatedness to a granin protein. A 7-8 kDa polypeptide candidate (gels/MS) appeared in a bioassay-guided fractionation campaign involving sheep plasma. An N-terminal sequence of 14 amino acids was obtained for the polypeptide by Edman degradation. Bioinform...

متن کامل

Chromogranin a Positive Mast Cells in the Dog Paranal Sinus

The granin family (Chromogranin A (CgA), 4 Chromogranin B (CgB), Secretogranin (Sg) II, and the less well studied Secretogranins III-VII) comprises a group of acidic proteins that are present in the secretory granules of a wide variety of endocrine and neuro-endocrine cells [6, 22]. There is evidence that granins may be associated to the precursors of biologically active peptides [11, 12, 17]. ...

متن کامل

Chromogranins A and B and secretogranin II as prohormones for regulatory peptides from the diffuse neuroendocrine system.

Chromogranin A (CgA), chromogranin B (CgB), and secretogranin II (SgII) belong to a family of uniquely acidic secretory proteins in elements of the diffuse neuroendocrine system. These "granins" are characterized by numerous pairs of basic amino acids as potential sites for intra- and extragranular processing. In response to adequate stimuli, the granins are coreleased with neurotransmitters an...

متن کامل

Hippocampal Astrocyte Response to Melatonin Following Neural Damage Induction in Rats

Introduction: Brain injury induces an almost immediate response from glial cells, especially astrocytes. Activation of astrocytes leads to the production of inflammatory cytokines and reactive oxygen species that may result in secondary neuronal damage. Melatonin is an anti-inflammatory and antioxidant agent, and it has been reported to exert neuroprotection through the prevention of neuronal d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 20 6  شماره 

صفحات  -

تاریخ انتشار 2010